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INVESTIGATION OF HEAT TRANSFER IN A GRADIENT FLOW

REGION FOR PLANE TURBULENT JET IMPINGING ON A PLATE

SITUATED NORMAL TO THE FLOW

A. A. Andreyev, V. N. Dakhno

V. K. Savin and B. N. Yudayev

ABSTRACT. Experimental determination of the
boundary conditions required for the solution system
of equations of motion, discontinuity equation, and
energy equation describing heat transfer in the
gradient flow region arising when a plane isothermal
turbulent jet impinges on a plate situated normal to
the flow. The boundary conditions are obtained in the
form of a universal relation between the velocity at
the outer boundary of the boundary layer, th~ coordinate
along the plate, and the spacing between the plate and
the nozzle. Formulas for calculating the heat transfer
coefficient in a laminar boundary layer are derived.
A substantial discrepancy is found to exist between
the experimental and theoretical results. An analysis
of the changes in the experimental heat transfer
coefficient near the spreading line as a function of
the spacing between the nozzle and the plate, and of
the influence of this spacing on the degree of turbu­
lence indicates that the relation between this
coefficient and the degree of turbulence may be con­
sidered to be linear in the first approximation. This
result is used as a basis for deriving formulas for the
heat transfer coefficient in the gradient flow region
under consideration.

When a flat jet impinges on a plate situated normal to the jet flow,

and in the case of an axially symmetric jet [1], three regions of flow can be

distinguished:

*Numbers in the margin indicate pagination in the original foreign text.
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1. A region of gradient flow where the pressure falls off along the

plate from a maximum value at the spreading line to a value near atmo~heric

pressure at a certain distance x from the line. The velocity at the outer

boundary of the boundary layer, U, increases from 0 at the spreading line to

a maximum value, U* at a distance x* from it. The y-axis lies in the plane

of symmetry of the jet normal to the plate, the x axis along the plate,

normal to the spreading line.

Within this region beyond the limits of the boundary layer, the flow

is considered potential and is described by the equation

u au = _...!.. ap . \
ax .p ax I

. I

(1)

2. A region of transition flow, where the velocity U remains practically

constant.

3. A region of principal flow, where the velocity U begins to decrease

as a result of the deceleration of the jet along the wall, and the pressure

remains practically constant.

In the present paper, an investigation is made of only the gradient flow

region. From the practical point of view this region is of the greatest

importance. At the same time, the physical processes occurring here are the

most complicated, and their analysis is very laborious.

Considering that the Reynolds numbers for the region in question are

small, we assume that the boundary layer here is laminar, especially since

dP/dx < O.

Under these conditions, the system of differential equations of motion,

continuity, energy, and the boundary conditions which describe the process

of heat transfer can be written as
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.... au '. au . dU' CPu
u-.+v--;U-o +v- ..'. 'ox . au '.. dx . . all'

ou+· Ov_ o·' oj- -..,...
ox 'og '.,' .

'aT· .. aT . CPT ,
u-+v-.=a--.'. ox au all', .

The boundary conditions are:

(2)

(3)

(4)

Tlhe velocity at the outer boundary of the boundary layer can be represented

by the first two terms of a series, which is in satisfactory agreement with

the actual conditions (Figure 1).

(5)

where Sl' S2 are constants dependent on h. The equation of continuity is

satisfied for
. oWu=·-.
, aU

. v =- oW.' :1
. ox.: (6)

Let us introduce a dimensionless coordinate~= y VP~ land write the stream

function ~ as follows:

(7)

where f.(n) are functions of the dimensionless coordinate n.
~

On the basis of (6) and (7) we shall find the distribution of the

velocities u and v in terms of the width of the boundary

(8)
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~10)

where the prime signifies q~fferen­

tiation with respect to n. The dis­

tribution of the dimensionless

temperature across the boundary layer

can be represented by [4]
"-" T--'T·· . 1
T.(~,y) = T"-;'lD .Fo(T))j

..... Ii, ,.~ :' ".' '. ",
+-x Fi(f)) +.4 .'f"PI . "

where FO(n), F2 (n) are functions of

the dimensionless coordinate nand

Pro

48. x,«.

·-f
0-2
• -.-3.-~.
• -5
6-6

o

, U r-----.-----::--;oo:C~_IP',

u.
10.81-----+

Substituting (8) and (9) in (2),

and (10) in (4), after some algebra,

we obtain the following system of differential equations [4, 7]:

Figure 1. Velocity change at the
outer border of the boundary layer:

b
O

= 31 rom; uo = 15.5 m/sec; 1 -

h = 1.67; 2 - 4; bO = 22 mm; uo =
17 m/sec; 3 - h = 6.25; 4 - 9.1;

b
O

= 11 rom; uo = 20.8 m/sec; 5 -

h = 17.8; 6 - 22.3; 7 - by Formula
(15); 8 - based on the data of [6].

f ,2 ft"· ,iI
.' I - 1/1 -:- 1 +fl'

, 4f", t', _:3f: f ~ f··'f·· .. 11 +' ,,;,;
,13 '1"13' 3'

. . ... . . . '.. -.
f,' ... ,.'

- F:o+ fiFo =0,
Pr .

l' . ' , ,

Pr ~ + fIF~,,- 2fl. .-: 1,2faF~ ':'".

(11)

.. .. .. -, -; .. .. .'
with the boundary conditions of the form

fromTJ-+O' Ii = t; =13 = f~ = 0,

from I" , 1 I' ,1
TJ~ 00, 1:. " ..3 -:- 4'
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The system of Equations (11) ith the above boundary conditions has been

solved using numerical methods [2, 4].

The values of the unknown quantities f i , f~, f~, f"~ are given in [3],

and F~ in [4]. The heat flux to the wall can be found using Fourier's and
1

Newton's law. Equating the absolute values of the right-hand sides, we

obtain

(12)

whence in view of (10) we find(l)

(13)

If the Prandt1 number is Pr = 0.7, the values of the functions will be

F'O(O) = 0.4959, F'2(0) = 0.4476 [4]. Taking these values into account,

we shall represent (13) in the following form:

Nuz = ~o }! ~1 (0.496 +0,448.,,2:: +... ) .1 (14)

Formula (14) can be used in theoretical calculations assuming we know

the values of the constants 8
1

and 8
3

• These values have been determined

experimentally. The experiments were done using nozzles with a slit 150 mm

long and 5, 11, 20, 31 mm wide. A polished plate was 200 x ~OO mm in size.

The openings used to determine the static pressure were 0.3 mm in diameter,

and the distance between them was 5 mm. The total pressure in the boundary

layer was measured using a pressure-measuring tube built especially for this

purpose. The experiments were done with the stream velocities at the nozzle

slit ranging from 5 to 25 m/sec.

(l)Retaining the first two terms of the series.
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The experimental results can be represented in the form of the following

universal relationship (Figure 1):

. U' x'" ( .r. )1 \-=1,6--0,6 - _,
U." .r..' x., (15)

The quantities U* and x* depend on the distance between the nozzle slit

and the plate. They can be determined from the experimental results by

means of the following formulas:

for 1 < ii < 6.5

- x. 1 '7;;:0,1'x. = - ~ • fJ ,

," bo
(16)

for 11 > 6.5

-' x.' , -0,7 \x. = - = 0,5811: •b I
. . 0, • • • • . \

(17)

Comparing (5) and (14), we find that within the experimental range

investigated

(18)

The theoretical relationships for the local values of the heat transfer

coefficients a in the gradient flow region can be found by substituting (18)

in (13), and taking (16) and (17) into account, i.e.,

for 1 ~ h ~ 6.5

6

for ii > 6.5

'(' 1)1Nu% =0,48 Reoo,s l-o,116~ 2 =01'
, h' II: •

',( x· \ I
Nu% = 1,25 Reg,s, 1-1,05 hI •• ) /f.G'

(19)

(20)



At the spreading line for x

for 1 ~ h < 6.5

0, Equations (19) and (20) will become:

forh>6.5

(21)

(22)

Comparison of the values of the heat transfer coefficient a, as calcu­

lated using Equations (21) and (22), with the values obtained directly from

experiment [6] shows that

1. For h < 3 one observes a good agreement between these values. The

validity of the comparison is confirmed by a good agreement between the two

relationships U = f(x) (Figure 1). The first was obtained experimentally in

the present paper, and the second was obtained theoretically from Equation

(1) on the basis of data on the distribution of pressure with X, obtained

from the papers by Gardon and Akfirat [5].

We note that in the region h < 14, there is a certain scatter among the

experimental values, depending on the slit width bOo The slit width b
O

affects the initial degree of turbulence of a jet, EO' Smaller values of a

correspond to a lower degree of initial turbulence of the jet.

In order to make a comparison with an identical initial degree of turbu­

lence, the theoretical values of a (21) were compared with the smallest

values obtained experimentally.

2. For h ~ 3 the experimental values of a become greater than the

theoretical values. As h increases, the discrepancy between the experimental

and theoretical values of the heat transfer coefficient becomes greater and

attains a maximum at h ~ 14.
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3. With a further increase in h > 14, the discrepancy remains the same.

The experimental values of the heat transfer coefficient in the neigh­

borhood of the spreading line, aO' for h > 14 turn out to be approximately

two times greater than the theoretical values of a
O

' In order to understand

this large discrepancy, let us consider the plots shown in Figure 2,a and b.

0

~

~ """
~ bl-10 20 :JIJ EMo

NU
1,2

46

EM iiiuo
1,2

110

0.6
20

0
a/

o. 10 20 :J(J h

Figure 2. Effect of turbulence on heat transfer
intensification at the spreading line:

a - 1 - NuO versus h; 2 - EM' % versus h [6];

b - NuO versus EM'

at the spreading line, referred to the theoretical value aO'

versus the distance of the plate from the nozzle. The second

= f(h)

(21)

Figure 2,a contains two plots. The first (1) is a.p1ot of Nu
O

(20) ­

(2) is a plot

of EM = f(h) [5] of the local axial degree of turbulence of a jet versus the

distance from the nozzle, where the dashed portion of Curve 2 was plotted on

the basis of the fact that, for h > 14, the authors found that EM remains

approximately constant. These two plots were obtained for the same nozzle

with ReO = 5500, The value of Nu
O

was found from

_ Nu~
NUo= -.-1.

NUo
(23)

The good correlation between Curves 1 and 2 in Figure 2,a permits us to draw

the following conclusions:
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1. The increase in the heat transfer coefficient a
O

' at the plate with

the distance from the nozzle is related to the degree of turbulence, EM' of

the incoming jet.

2. To a first approximation, this relationship can be assumed to be

linear.

Figure 2,b is a plot of Nu
O

the curves shown in Figure 2,a.

f (EM) which was qbtained by replotting

On the basis of the relationships plotted in Figure 2,a and b, and

assuming that the correction of the formulas for the effect of the degree

of turbulence in the neighborhood of the spreading line is valid throughout

the entire region of gradient flow, we obtain corrected formulas in the form:

for 1 ~ h ~ 6.5

for 6.5 ~ h < 12

R 05( . -.'). .
NU;I: = 1.25 _:~ 1- 1,05 _Xl' • (1 + 0,01geaJ~

h' .. h'"

for ii > 12

(24)

(25)

(26)

The results based on Formulas (24) - (26) are plotted in Figure 3,a,b as

solid curves; the experimental results -- as dashed curves. Comparing the

theoretical values of the heat transfer coefficient with the experimental ones,

we can draw the following conclusion. Regardless of the fact that Formulas

(24) - (26) were corrected for a single value of the Reynolds number ReO = 5500,

the theoretical values are in satisfactory agreement with the experimental
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Figure 3. Heat transfer
gradient flow region:

a - Nu
O

versus h (1 - 4 (solid curves) based

on Formulas (24) - (26); 1 - ReO = 22,000;

2 - 11,000; 3 - 5500; 4 - 2750)1; dashed curves
are based on the experimental data of [5];
b - Nu versus x (ReO = 11,000; I - h = 2;

II - 5; I II - 6; IV - 8; V - 16; VI - 32; 1 ­
based on formulas (24) - (26); 2 - based on
[5].

901---+---+--+---j

70 J-:,.:H--+-....3l",~--+---j

ones (discrepancy does not exceed 15%) within a wider range of Reynolds

number (up to ReO = 22,000) and for nozzles with the initial degree of

turbulence up to EO = 7%.

Notation

b , width of nozzle slit; h, distance from nozzle cut to plate; h, the
o

same in dimensionless form; x, current abscissa; X, dimensionless abscissa;

x*, dimensionless abscissa when the velocity at outer border of wall boundary

layer gets its maximum value; U, velocity at outer border of boundary layer; I
U*, maximum velocity at outer border; U*, the same in dimensionless form; T

w
'

temperature of plate surface; Too, temperature of incoming flow; T, dimension­

less temperature; p, static pressure at given section of boundary layer; 0,
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thickness of dynamic boundary layer; 0T' thickness of thermal boundary layer;

a, heat transfer coefficient; ReO' Reynolds number referred to parameters at

nozzle cut; Nu, Nusselt number; EO' degree of initial turbulence; EM' degree

of turbulence at jet axis referred to axial velocity.
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